Login / Signup

Exogenous abscisic acid and root volatiles increase sporulation of Rhizophagus irregularis DAOM 197198 in asymbiotic and pre-symbiotic status.

Xiaodi LiuZengwei FengHonghui ZhuQing Yao
Published in: Mycorrhiza (2019)
Several studies have demonstrated asymbiotic growth and development of arbuscular mycorrhizal (AM) fungi, although AM fungi are regarded as obligately symbiotic root-inhabiting fungi. Phytohormones, root exudates, and volatiles are important factors regulating the host-AM fungi interaction. However, the effects of phytohormones, root exudates, and volatiles on asymbiotic (without roots present) or pre-symbiotic (with roots present but no colonization) sporulation of AM fungi are unexplored. In this study, we tested the asymbiotic sporulation of Rhizophagus irregularis DAOM 197198 and further investigated the influences of abscisic acid (ABA), the exudates, and volatiles of tomato hairy roots on asymbiotic or pre-symbiotic sporulation in vitro. Results indicated that mother spores asymbiotically and pre-symbiotically produced daughter spores singly or in pairs. Compared with symbiotically produced spores, pre-symbiotically produced spores were significantly smaller (43.1 μm vs. 89.2 μm in diameter). Exogenous ABA applied to mother spores significantly increased the number of daughter spores, and root volatiles also significantly promoted pre-symbiotic sporulation. Our results provide the first evidence that exogenous ABA can promote AM fungal asymbiotic and pre-symbiotic sporulation, which highlights the potential role of phytohormones in AM fungal propagation.
Keyphrases
  • bacillus subtilis
  • gas chromatography mass spectrometry
  • transcription factor
  • mass spectrometry
  • arabidopsis thaliana
  • atomic force microscopy
  • gas chromatography