Can conditions of skeletal muscle loss be improved by combining exercise with anabolic-androgenic steroids? A systematic review and meta-analysis of testosterone-based interventions.
Hugo Falqueto SoaresJorge L R JúniorMauro N O SilvérioJuliano Cesar Huf FariasBrad Jon SchoenfeldLeandro Henrique ManfrediPublished in: Reviews in endocrine & metabolic disorders (2021)
Sarcopenia, cachexia, and atrophy due to inactivity and disease states are characterized by a loss of skeletal muscle mass, often accompanied by reduced levels of anabolic hormones (e.g. testosterone). These conditions are associated with an increase in mortality, hospitalization and worsening in quality of life. Both physical exercise (EX) and anabolic-androgenic steroid (AAS) administration can improve the prognosis of patients as they increase physical functionality. However, there is a gap in the literature as to the impact of these therapies on the gains in strength and muscle mass and their implications for patient safety. Accordingly, we performed a random-effects meta-analysis to elucidate the effects of AAS and/or EX interventions on lean body mass (LBM) and muscle strength in conditions involving muscle loss. A systematic search for relevant clinical trials was conducted in MEDLINE, EMBASE, SCOPUS, Web of Science, and SPORTDiscus. Comparisons included AAS vs. Control, EX vs. Control, AAS vs. EX, AAS + EX vs. AAS and AAS + EX vs. EX. A total of 1114 individuals were analyzed. AAS increased LBM (effect size [ES]: 0.46; 95% CI: 0.25, 0.68, P = 0.00) and muscle strength (ES: 0.31; 95% CI: 0.08, 0.53, P = 0.01) when compared to a control group. EX promoted an increase in muscular strength (ES: 0.89; 95% CI: 0.53, 1.25, P = 0.00), with no effect on LBM when compared to the control group (ES: 0.15; 95% CI: -0.07, 0.38, P = 0.17). AAS did not demonstrate statistically significant differences when compared to EX for LBM and muscle strength. The combination of EX + AAS promoted a greater increase in LBM and muscular strength when compared to AAS or EX in isolation. Qualitatively, AAS administration had relatively few side effects. Significant heterogeneity was found in some analyses, which may be explained by the use of different AAS types and EX protocols. Our findings suggest that AAS administration in cachectic and sarcopenic conditions may be a viable interventional strategy to enhance muscle function when exercise is not a possible approach. Moreover, combining AAS with exercise may enhance positive outcomes in this population.