Login / Signup

Concentric ring topology of mammalian cortical sectors and relevance for patterning studies.

Luis PuellesAntonia AlonsoElena García-CaleroMargaret Martínez-de-la-Torre
Published in: The Journal of comparative neurology (2019)
Models aiming to explain causally the evolutionary or ontogenetic emergence of the pallial isocortex and its regional/areal heterogeneity in mammals use simple or complex assumptions about the pallial structure present in basal mammals and nonmammals. The question arises: how complex is the pattern that needs to be accounted for in causal models? This topic is also paramount for comparative purposes, since some topological relationships may be explained as being ancestral, rather than newly emerged. The mouse pallium is apt to be reexamined in this context, due to the breadth of available molecular markers and correlative experimental patterning results. We center the present essay on a recapitulative glance at the classic theory of concentric mammalian allo-, meso-, and neocortex domains. In its simplest terms, this theory postulates a central neocortical island (6 layers) separated by a surrounding mesocortical ring (4-5 layers) from a peripheral allocortical ring (3 layers). These territories show additional partition into regional or areal subdivisions. There are also borderline amygdalar, claustral, and septal areas of the pallium, nuclear in structure. There has been little effort so far to contemplate the full concentric ring model in current "cortex patterning" models. In this essay, we recapitulate the ring idea in mammals (mouse) and consider a potential causal patterning scenario using topologic models. Finally, we briefly explore how far this theory may apply to pallium models proposed recently for sauropsids.
Keyphrases
  • heart failure
  • genome wide
  • dna methylation
  • climate change
  • atrial fibrillation
  • functional connectivity
  • hypertrophic cardiomyopathy