Login / Signup

LC-MS Reveals Isomeric Inhibition of Proteolysis by Lysosomal Cathepsins.

Gaurav PandeyRyan R Julian
Published in: Analysis & sensing (2022)
Defects in autophagy are implicated in many age-related diseases that cause neurodegeneration including both Alzheimer's and Parkinson's. Within autophagy, the lysosome plays a crucial role by enabling the breakdown and recycling of a wide range of biomolecular species. Herein, the effects of isomerization of aspartic acid (Asp) on substrate recognition and degradation are investigated for a collection of lysosomal cathepsins using liquid chromatography coupled to mass spectrometry. By examining a series of synthetic peptides with sequences derived from long-lived proteins known to undergo Asp isomerization, we demonstrate that isomerized forms of Asp significantly perturb cathepsin activity by impeding digestion and shifting preferential sites of proteolysis. Although the sensitivity to isomerization varies for each cathepsin, none of the cathepsins were capable of digesting sites within several residues of the C-terminal side of the isomerized Asp. Under physiological conditions, the peptide fragments left behind after such incomplete digestion would not be suitable substrates for transporter recognition and could precipitate autophagic malfunction in the form of lysosomal storage.
Keyphrases