Login / Signup

Framework for converting mechanistic network models to probabilistic models.

Ravi GoyalVictor De GruttolaJukka-Pekka Onnela
Published in: Journal of complex networks (2023)
There are two prominent paradigms for the modelling of networks: in the first, referred to as the mechanistic approach, one specifies a set of domain-specific mechanistic rules that are used to grow or evolve the network over time; in the second, referred to as the probabilistic approach, one describes a model that specifies the likelihood of observing a given network. Mechanistic models (models developed based on the mechanistic approach) are appealing because they capture scientific processes that are believed to be responsible for network generation; however, they do not easily lend themselves to the use of inferential techniques when compared with probabilistic models. We introduce a general framework for converting a mechanistic network model (MNM) to a probabilistic network model (PNM). The proposed framework makes it possible to identify the essential network properties and their joint probability distribution for some MNMs; doing so makes it possible to address questions such as whether two different mechanistic models generate networks with identical distributions of properties, or whether a network property, such as clustering, is over- or under-represented in the networks generated by the model of interest compared with a reference model. The proposed framework is intended to bridge some of the gap that currently exists between the formulation and representation of mechanistic and PNMs. We also highlight limitations of PNMs that need to be addressed in order to close this gap.
Keyphrases
  • drug delivery
  • single cell
  • rna seq