Login / Signup

Clinical evaluation of time-of-flight MR angiography with sparse undersampling and iterative reconstruction for cerebral aneurysms.

Yasutaka FushimiTomohisa OkadaTakayuki KikuchiAkira YamamotoTsutomu OkadaTakayuki YamamotoMichaela SchmidtKazumichi YoshidaSusumu MiyamotoKaori Togashi
Published in: NMR in biomedicine (2017)
Compressed sensing (CS) MRI has just been introduced to research areas as an innovative approach to accelerate MRI. CS is expected to achieve higher k-space undersampling by exploiting the underlying sparsity in an appropriate transform domain. MR angiography (MRA) provides high spatial resolution information on arteries; however, a relatively long acquisition time is necessary to cover a wide volume. Reduction of acquisition time by CS for time-of-flight (TOF) MR angiography (Sparse-TOF) is beneficial in clinical examinations; therefore, the clinical validity of Sparse-TOF needs to be investigated. The aim of this study was to compare the diagnostic capability of TOF MRA between parallel imaging (PI)-TOF with an acceleration factor of 3 (annotated as 3×) and Sparse-TOF (3× and 5×) in patients with cerebral aneurysms. PI-TOF (3×) and Sparse-TOF (3× and 5×) imaging were performed in 20 patients using a 3 T MRI system. Aneurysms in PI-TOF (3×) and Sparse-TOF (3× and 5×) were blindly rated as visible or scarcely visible by neuroradiologists. The neck, height and width of aneurysms were also measured. Twenty-six aneurysms were visualized and rated as visible in PI-TOF (3×) and Sparse-TOF (3× and 5×), with excellent agreement between two raters. No significant differences were found in measured neck, height or width of aneurysms among them. Sparse-TOF (3× and 5×) were acquired and reconstructed within 6 min, and cerebral aneurysms were visible in both of them with equivalent quality to PI-TOF (3×). Sparse-TOF (5×) is a good alternative to PI-TOF (3×) to visualize cerebral aneurysms.
Keyphrases