Foliar Application of 24-Epibrassinolide Improves Growth, Ascorbate-Glutathione Cycle, and Glyoxalase System in Brown Mustard (Brassica juncea (L.) Czern.) under Cadmium Toxicity.
Pravej AlamSukhmeen Kaur KohliThamer Al BalawiFahad H AltalayanPrawez AlamMuhammad AshrafRenu BhardwajParvaiz AhmadPublished in: Plants (Basel, Switzerland) (2020)
Cadmium (Cd) metal toxicity is a crucial ecological matter that requires immediate efforts to mitigate it. Brassica juncea plants were exposed to Cd (0 and 200 µM as CdSO4) and foliar application of 24-Epibrassinolide (EBR) (0, 10-7 and 10-5 M). The toxic effect of Cd was evident in terms of declined growth and biomass yield, lowered levels of pigment content and chlorophyll fluorescence, and reduction in gas exchange attributes. The levels of proline and glycinebetaine increased in response to Cd treatment. There was an imperative rise in the contents of H2O2 and malondialdehyde as well as electrolyte leakage in the Cd-stressed plants. With the application of EBR, there was a significant replenishment in growth attributes and photosynthetic efficacy. The contents of ROS (reactive oxygen species) and malondialdehyde as well as electrolyte leakage were reduced by the hormone supplementation. Enhancement in the contents of glutathione and ascorbic acid, and the activities of enzymes of the antioxidative defense system and glyoxalase system was recorded in response to Cd as well as hormone treatment. The in situ levels of Cd in roots and shoot were augmented in response to Cd treatment, but were found to be lowered by the EBR application.