Photoinduced transformations of indole and 3-formylindole monomers isolated in low-temperature matrices.
Igor RevaLeszek LapinskiA J Lopes JesusMaciej J NowakPublished in: The Journal of chemical physics (2018)
Photochemical transformations were studied for monomers of indole and 3-formylindole isolated in low-temperature noble-gas matrices. Upon UV (λ > 270 nm) irradiation of indole trapped in argon and neon matrices, the initial 1H-form of the compound converted into the 3H-tautomer. Alongside this photoinduced hydrogen-atom transfer, an indolyl radical was also generated by photodetachment of the hydrogen atom from the N1-H bond. Excitation of 3-formylindole isolated in an argon matrix with UV (λ > 335 nm) light led to interconversion between the two conformers of the 1H-tautomer, differing from each other in the orientation of the formyl group (cis or trans). Parallel to this conformational phototransformation, the 3H-form of the compound was generated in the 1H → 3H phototautomeric conversion. The photoproducts emerging upon UV irradiation of indole and 3-formylindole were identified by comparison of their infrared spectra with the spectra calculated for candidate structures.