A Compression Valve for Sanitary Control of Fluid-Driven Actuators.
Simone CalòJames H ChandlerFederico CampisanoKeith L ObsteinPietro ValdastriPublished in: IEEE/ASME transactions on mechatronics : a joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division (2019)
With significant research focused on integrating robotics into medical devices, sanitary control of pressurizing fluids in a precise, accurate and customizable way is highly desirable. Current sanitary flow control methods include pinch valves which clamp the pressure line locally to restrict fluid flow; resulting in damage and variable flow characteristics over time. This paper presents a sanitary compression valve based on an eccentric clamping mechanism. The proposed valve distributes clamping forces over a larger area, thereby reducing the plastic deformation and associated influence on flow characteristic. Using the proposed valve, significant reductions in plastic deformation (up to 96%) and flow-rate error (up to 98%) were found, when compared with a standard pinch valve. Additionally, an optimization strategy presents a method for improving linearity and resolution over the working range to suit specific control applications. The valve efficacy has been evaluated through controlled testing of a water jet propelled low-cost endoscopic device. In this case, use of the optimized valve shows a reduction in the average orientation error and its variation, resulting in smoother movement of the endoscopic tip when compared to alternative wet and dry valve solutions. The presented valve offers a customizable solution for sanitary control of fluid driven actuators.