Login / Signup

A Path to Ultraselectivity: Support Layer Properties To Maximize Performance of Biomimetic Desalination Membranes.

Jay R WerberCassandra J PorterMenachem Elimelech
Published in: Environmental science & technology (2018)
Reverse osmosis (RO) has become a premier technology for desalination and water purification. The need for increased selectivity has incentivized research into novel membranes, such as biomimetic membranes that incorporate the perfectly selective biological water channel aquaporin or synthetic water channels like carbon nanotubes. In this study, we consider the performance of composite biomimetic membranes by projecting water permeability, salt rejection, and neutral-solute retention based on the permeabilities of the individual components, particularly the water channel, the amphiphilic bilayer matrix, and potential support layers that include polymeric RO, nanofiltration (NF), and porous ultrafiltration membranes. We find that the support layer will be crucial in the overall performance. Selective, relatively low-permeability supports minimize the negative impact of defects in the biomimetic layer, which are currently the main performance-limiting factor for biomimetic membranes. In particular, RO membranes as support layers would enable >99.85% salt rejection at ∼10000-fold greater biomimetic-layer defect area than for porous supports. By fundamentally characterizing neutral-solute permeation through RO and NF membranes, we show that RO membranes as support layers would enable high rejection of organic pollutants based on molecular size, overcoming the rapid permeation of hydrophobic solutes through the biomimetic layer. A biomimetic membrane could also achieve exceptionally high boron rejections of ∼99.7%, even with 1% defect area in the biomimetic layer. We conclude by discussing the implications of our findings for biomimetic membrane design.
Keyphrases
  • tissue engineering
  • signaling pathway
  • carbon nanotubes
  • immune response
  • climate change
  • cell proliferation
  • inflammatory response
  • nuclear factor
  • ionic liquid
  • cancer therapy
  • quantum dots