Cyanide Docking and Linkage Isomerism in Models for the Artificial [FeFe]-Hydrogenase Maturation Process.
Debangsu SilZachary MartinezShengda DingNattamai BhuvaneshDonald J DarensbourgMichael B HallMarcetta Y DarensbourgPublished in: Journal of the American Chemical Society (2018)
Linkage isomerization of the cyanide on the [2Fe] subsite of the [FeFe]-H2ase active site was reported to occur during the docking of various synthetic diiron complexes onto a carrier protein, apo-HydF, as the initial step for the artificial maturation of the [FeFe]-H2ase enzyme (Berggren et al., Nature, 2013, 499, 66-70). An investigation of our triiron organometallic models (FeFe-CN/NC-Fe') revealed that, once a Fe-CN-Fe connection is formed, high barriers prevent such cyanide linkage isomerization ( Chem. Sci., 2016, 7, 3710-3719). To explore effects of variable oxidation states of the receiver unit, we introduce copper(I/II) fragments, precedented in Holm's models of cytochrome c oxidase to induce cyanide isomerization (Cu-CN/NC-Fe), to the diiron synthetic analogues of [FeFe]-H2ase. For comparison, a zinc variant of the cytochrome c oxidase model is also examined. According to the oxidation state of copper, a cyanide flip was induced during the formation of both Zn-NC-Cu and FeFe-CN-Cu complexes. Density functional theory calculations are used to predict the mechanisms for such linkage isomerization and account for optimal conditions including oxidation states of metals, spin states, and solvation. These results on synthetic paradigms imply a role for oxidation state control of cyanide isomerization during hydrogenase active site assembly.
Keyphrases
- density functional theory
- molecular dynamics
- fluorescent probe
- metal organic framework
- aqueous solution
- visible light
- molecular dynamics simulations
- lymph node metastasis
- genome wide
- hydrogen peroxide
- hiv testing
- protein protein
- oxide nanoparticles
- spinal cord injury
- electron transfer
- molecular docking
- squamous cell carcinoma
- dna methylation
- gene expression
- diabetic rats
- hiv infected
- nitric oxide
- health risk
- single molecule
- risk assessment
- drug induced
- binding protein
- climate change
- drinking water
- room temperature
- human health
- antiretroviral therapy