Login / Signup

Endometrial Cancer Individualized Scoring System (ECISS): A machine learning-based prediction model of endometrial cancer prognosis.

Sherif Abdelkarim ShazlyPluvio J CoronadoErcan YılmazRauf MelekogluHanifi SahinLuca GiannellaAndrea CiavattiniGiovanni Delli CarpiniJacopo Di GiuseppeAngel YordanovKonstantina KarakadievaNevena Milenova NedelchevaMariela Vasileva-SlavevaJuan Luis AlcazarEnrique ChaconNabil ManzourJulio VaraErbil KaramanOnur KaraaslanLatif HacıoğluDuygu KorkmazCem OnalJure KnezFederico FerrariEsraa M HosniMohamed E MahmoudGena M ElassallMohamed S AbdoYasmin I MohamedAmr S Abdelbadienull null
Published in: International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics (2022)
The Endometrial Cancer Individualized Scoring System (ECISS) is a novel machine learning tool assessing patient-specific survival probability with high accuracy.
Keyphrases
  • endometrial cancer
  • machine learning
  • artificial intelligence
  • big data
  • deep learning
  • free survival