Characterization of a Giant PSI Supercomplex in the Symbiotic Dinoflagellate Symbiodiniaceae.
Hiroki KatoRyutaro TokutsuHisako Kubota-KawaiRaymond N Burton-SmithEunchul KimJun MinagawaPublished in: Plant physiology (2020)
Symbiodiniaceae are symbiotic dinoflagellates that provide photosynthetic products to corals. Because corals are distributed across a wide range of depths in the ocean, Symbiodiniaceae species must adapt to various light environments to optimize their photosynthetic performance. However, as few biochemical studies of Symbiodiniaceae photosystems have been reported, the molecular mechanisms of photoadaptation in this algal family remain poorly understood. Here, to investigate the photosynthetic machineries in Symbiodiniaceae, we purified and characterized the PSI supercomplex from the genome-sequenced Breviolum minutum (formerly Symbiodinium minutum). Mass spectrometry analysis revealed 25 light-harvesting complexes (LHCs), including both LHCF and LHCR families, from the purified PSI-LHC supercomplex. Single-particle electron microscopy showed unique giant supercomplex structures of PSI that were associated with the LHCs. Moreover, the PSI-LHC supercomplex contained a significant amount of the xanthophyll cycle pigment diadinoxanthin. Upon high light treatment, B. minutum cells showed increased nonphotochemical quenching, which was correlated with the conversion of diadinoxanthin to diatoxanthin, occurring preferentially in the PSI-LHC supercomplex. The possible role of PSI-LHC in photoprotection in Symbiodiniaceae is discussed.