The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence.
Tomasz OlszakMikhail M ShneiderAgnieszka LatkaBarbara MaciejewskaChristopher BrowningLada V SychevaAnneleen CornelissenKatarzyna Danis-WlodarczykSofya N SenchenkovaAlexander S ShashkovGrzegorz GulaMichal ArabskiSlawomir WasikKonstantin A MiroshnikovRob LavignePetr G LeimanYuriy A KnirelZuzanna Drulis-KawaPublished in: Scientific reports (2017)
Pseudomonas phage LKA1 of the subfamily Autographivirinae encodes a tailspike protein (LKA1gp49) which binds and cleaves B-band LPS (O-specific antigen, OSA) of Pseudomonas aeruginosa PAO1. The crystal structure of LKA1gp49 catalytic domain consists of a beta-helix, an insertion domain and a C-terminal discoidin-like domain. The putative substrate binding and processing site is located on the face of the beta-helix whereas the C-terminal domain is likely involved in carbohydrates binding. NMR spectroscopy and mass spectrometry analyses of degraded LPS (OSA) fragments show an O5 serotype-specific polysaccharide lyase specificity. LKA1gp49 reduces virulence in an in vivo Galleria mellonella infection model and sensitizes P. aeruginosa to serum complement activity. This enzyme causes biofilm degradation and does not affect the activity of ciprofloxacin and gentamicin. This is the first comprehensive report on LPS-degrading lyase derived from a Pseudomonas phage. Biological properties reveal a potential towards its applications in antimicrobial design and as a microbiological or biotechnological tool.
Keyphrases
- pseudomonas aeruginosa
- biofilm formation
- cystic fibrosis
- inflammatory response
- acinetobacter baumannii
- mass spectrometry
- dna binding
- obstructive sleep apnea
- anti inflammatory
- binding protein
- escherichia coli
- gene expression
- high resolution
- transcription factor
- single cell
- genome wide
- multidrug resistant
- ms ms
- high performance liquid chromatography
- amino acid
- risk assessment
- liquid chromatography
- protein protein
- oxidative stress
- signaling pathway
- capillary electrophoresis
- dengue virus
- human health
- crystal structure
- simultaneous determination