Intrinsic Excitability Increase in Cerebellar Purkinje Cells after Delay Eye-Blink Conditioning in Mice.
Heather K TitleyGabrielle V WatkinsCarmen LinCraig WeissMichael McCarthyJohn F DisterhoftChristian HanselPublished in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2020)
Cerebellar-based learning is thought to rely on synaptic plasticity, particularly at synaptic inputs to Purkinje cells. Recently, however, other complementary mechanisms have been identified. Intrinsic plasticity is one such mechanism, and depends in part on the downregulation of calcium-dependent SK-type K+ channels, which contribute to a medium-slow afterhyperpolarization (AHP) after spike bursts, regulating membrane excitability. In the hippocampus, intrinsic plasticity plays a role in trace eye-blink conditioning; however, corresponding excitability changes in the cerebellum in associative learning, such as in trace or delay eye-blink conditioning, are less well studied. Whole-cell patch-clamp recordings were obtained from Purkinje cells in cerebellar slices prepared from male mice ∼48 h after they learned a delay eye-blink conditioning task. Over a period of repeated training sessions, mice received either paired trials of a tone coterminating with a periorbital shock (conditioning) or trials in which these stimuli were randomly presented in an unpaired manner (pseudoconditioning). Purkinje cells from conditioned mice show a significantly reduced AHP after trains of parallel fiber stimuli and after climbing fiber evoked complex spikes. The number of spikelets in the complex spike waveform is increased after conditioning. Moreover, we find that SK-dependent intrinsic plasticity is occluded in conditioned, but not pseudoconditioned mice. These findings show that excitability is enhanced in Purkinje cells after delay eye-blink conditioning, and point toward a downregulation of SK channels as a potential underlying mechanism. The observation that this learning effect lasts at least up to 2 d after training shows that intrinsic plasticity regulates excitability in the long term.SIGNIFICANCE STATEMENT Plasticity of membrane excitability ("intrinsic plasticity") has been observed in invertebrate and vertebrate neurons, coinduced with synaptic plasticity or in isolation. Although the cellular phenomenon per se is well established, it remains unclear what role intrinsic plasticity plays in learning and if it even persists long enough to serve functions in engram physiology beyond aiding synaptic plasticity. Here, we demonstrate that cerebellar Purkinje cells upregulate excitability in delay eye-blink conditioning, a form of motor learning. This plasticity is observed 48 h after training and alters synaptically evoked spike firing and integrative properties of these neurons. These findings show that intrinsic plasticity enhances the spike firing output of Purkinje cells and persists over the course of days.
Keyphrases
- induced apoptosis
- cell cycle arrest
- endoplasmic reticulum stress
- transcranial direct current stimulation
- signaling pathway
- cell death
- oxidative stress
- adipose tissue
- spinal cord injury
- insulin resistance
- metabolic syndrome
- bone marrow
- single cell
- high fat diet induced
- skeletal muscle
- high resolution
- risk assessment
- wild type
- high speed