Temsavir Treatment of HIV-1-Infected Cells Decreases Envelope Glycoprotein Recognition by Broadly Neutralizing Antibodies.
Marianne BoutinDani VézinaShilei DingJérémie PrévostAnnemarie LaumaeaLorie MarchittoSai Priya AnandHalima MedjahedGabrielle Gendron-LepageCatherine BourassaGuillaume GoyetteAndrew ClarkJonathan RichardAndrés FinziPublished in: mBio (2022)
The heavily glycosylated HIV-1 envelope glycoprotein (Env) is the sole viral antigen present at the surface of virions and infected cells, representing the main target for antibody responses. The FDA-approved small molecule temsavir acts as an HIV-1 attachment inhibitor by preventing Env-CD4 interaction. This molecule also stabilizes Env in a prefusion "closed" conformation that is preferentially targeted by several broadly neutralizing antibodies (bNAbs). A recent study showed that an analog of temsavir (BMS-377806) affects the cleavage and addition of complex glycans on Env. In this study, we investigated the impact of temsavir on the overall glycosylation, proteolytic cleavage, cell surface expression, and antigenicity of Env. We found that temsavir impacts Env glycosylation and processing at physiological concentrations. This significantly alters the capacity of several bNAbs to recognize Env present on virions and HIV-1-infected cells. Temsavir treatment also reduces the capacity of bNAbs to eliminate HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC). Consequently, the impact of temsavir on Env glycosylation and antigenicity should be considered for the development of new antibody-based approaches in temsavir-treated individuals. IMPORTANCE FDA-approved fostemsavir, the prodrug for the active moiety small molecule temsavir (GSK 2616713 [formally BMS-626529]), acts as an attachment inhibitor by targeting the HIV-1 envelope (Env) and preventing CD4 interaction. Temsavir also stabilizes Env in its "closed," functional state 1 conformation, which represents an ideal target for broadly neutralizing antibodies (bNAbs). Since these antibodies recognize conformation-dependent epitopes composed of or adjacent to glycans, we evaluated the impact of temsavir treatment on overall Env glycosylation and its influence on bNAb recognition. Our results showed an alteration of Env glycosylation and cleavage by temsavir at physiological concentrations. This significantly modifies the overall antigenicity of Env and therefore reduces the capacity of bNAbs to recognize and eliminate HIV-1-infected cells by ADCC. These findings provide important information for the design of immunotherapies aimed at targeting the viral reservoir in temsavir-treated individuals.
Keyphrases
- hiv infected
- antiretroviral therapy
- induced apoptosis
- small molecule
- cell cycle arrest
- human immunodeficiency virus
- hiv positive
- cell surface
- hiv aids
- hepatitis c virus
- signaling pathway
- cancer therapy
- endoplasmic reticulum stress
- healthcare
- sars cov
- zika virus
- molecular dynamics simulations
- cell death
- cell proliferation
- dengue virus
- newly diagnosed
- hiv testing
- high resolution
- health information
- protein protein
- atomic force microscopy
- men who have sex with men