Login / Signup

Rectenna System Development Using Harmonic Balance and S-Parameters for an RF Energy Harvester.

Muhamad Nurarif Bin Md JamilMadiah Binti OmarRosdiazli B IbrahimKishore BingiMochammad Faqih
Published in: Sensors (Basel, Switzerland) (2024)
With the escalating demand for Radio Frequency Identification (RFID) technology and the Internet of Things (IoT), there is a growing need for sustainable and autonomous power solutions to energize low-powered devices. Consequently, there is a critical imperative to mitigate dependency on batteries during passive operation. This paper proposes the conceptual framework of rectenna architecture-based radio frequency energy harvesters' performance, specifically optimized for low-power device applications. The proposed prototype utilizes the surroundings' Wi-Fi signals within the 2.4 GHz frequency band. The design integrates a seven-stage Cockroft-Walton rectifier featuring a Schottky diode HSMS286C and MA4E2054B1-1146T, a low-pass filter, and a fractal antenna. Preliminary simulations conducted using Advanced Design System (ADS) reveal that a voltage of 3.53 V can be harvested by employing a 1.57 mm thickness Rogers 5880 printed circuit board (PCB) substrate with an MA4E2054B1-1146T rectifier prototype, given a minimum power input of -10 dBm (0.1 mW). Integrating the fabricated rectifier and fractal antenna successfully yields a 1.5 V DC output from Wi-Fi signals, demonstrable by illuminating a red LED. These findings underscore the viability of deploying a fractal antenna-based radio frequency (RF) harvester for empowering small electronic devices.
Keyphrases
  • energy transfer
  • molecular dynamics
  • genome wide
  • gene expression
  • dna methylation
  • health information
  • quantum dots