Comparison of Predictions by BCS, rDCS and Machine Learning for the Effect of Food on Oral Drug Absorption Based on Features Calculated In silico.
Yusuke HoshinoHideki YoshiokaAkihiro HisakaPublished in: The AAPS journal (2021)
In this study, observed food effects of 473 drugs were categorized into positive, negative, or no effects and compared with the predictions made by machine learning (ML), the Biopharmaceutics Classification System (BCS) and refined Developability Classification System (rDCS). All methods used primarily in silico estimates for prediction, and for ML, four algorithms were evaluated using nested cross-validation to select important information from 371 features calculated based on the chemical structure. Approximately 18 features, including estimated solubility in biorelevant media, were selected as important, and the random forest classifier was the best among four algorithms with 36.6% error rate (ER) and 10.8% opposite prediction rate (OPR). The prediction by rDCS utilizing solubility in a biorelevant medium was somewhat inferior, but not by much; 41.0% ER and 11.4% OPR. Compared with these two methods, the prediction by BCS was inferior; 54.5% ER and 21.4% OPR. ER was improved modestly by using measured features instead of in silico estimates when BCS was applied to a subset of 151 drugs (46.4% from 55.0%). ML and rDCS predicted the food effects of the same subset using in silico estimates with ERs of 37.7% and 42.4%, respectively, suggesting that the predictions by ML and rDCS using in silico features are similar or more accurate than those by BCS using measured features. These results suggest that ML was useful in revealing essential features from complex information and, together with rDCS, is effective in predicting food effects during drug development, including early drug discovery.