Login / Signup

Enzymatic synthesis of lignin derivable pyridine based polyesters for the substitution of petroleum derived plastics.

Alessandro PellisJames W ComerfordSimone WeinbergerGeorg M GuebitzJames H ClarkThomas J Farmer
Published in: Nature communications (2019)
Following concerns over increasing global plastic pollution, interest in the production and characterization of bio-based and biodegradable alternatives is rising. In the present work, the synthesis of a series of fully bio-based alternatives based on 2,4-, 2,5-, and 2,6-pyridinedicarboxylic acid-derived polymers produced via enzymatic catalysis are reported. A similar series of aromatic-aliphatic polyesters based on diethyl-2,5-furandicarboxylate and of the petroleum-based diethyl terephthalate and diethyl isophthalate were also synthesized. Here we show that the enzymatic synthesis starting from 2,4-diethyl pyridinedicarboxylate leads to the best polymers in terms of molecular weights (Mn = 14.3 and Mw of 32.1 kDa when combined with 1,8-octanediol) when polymerized in diphenyl ether. Polymerization in solventless conditions were also successful leading to the synthesis of bio-based oligoesters that can be further functionalized. DSC analysis show a clear similarity in the thermal behavior between 2,4-diethyl pyridinedicarboxylate and diethyl isophthalate (amorphous polymers) and between 2,5-diethyl pyridinedicarboxylate and diethyl terephthalate (crystalline polymers).
Keyphrases
  • hydrogen peroxide
  • room temperature
  • risk assessment
  • nitric oxide
  • climate change
  • quantum dots
  • high resolution
  • heat shock protein
  • transition metal