In vivo architecture of the telomerase RNA catalytic core in Trypanosoma brucei.
Abhishek DeyAnais Monroy-EklundKaitlin KlotzArpita SahaJustin DavisBibo LiAlain LaederachKausik ChakrabartiPublished in: Nucleic acids research (2022)
Telomerase is a unique ribonucleoprotein (RNP) reverse transcriptase that utilizes its cognate RNA molecule as a template for telomere DNA repeat synthesis. Telomerase contains the reverse transcriptase protein, TERT and the template RNA, TR, as its core components. The 5'-half of TR forms a highly conserved catalytic core comprising of the template region and adjacent domains necessary for telomere synthesis. However, how telomerase RNA folding takes place in vivo has not been fully understood due to low abundance of the native RNP. Here, using unicellular pathogen Trypanosoma brucei as a model, we reveal important regional folding information of the native telomerase RNA core domains, i.e. TR template, template boundary element, template proximal helix and Helix IV (eCR4-CR5) domain. For this purpose, we uniquely combined in-cell probing with targeted high-throughput RNA sequencing and mutational mapping under three conditions: in vivo (in WT and TERT-/- cells), in an immunopurified catalytically active telomerase RNP complex and ex vivo (deproteinized). We discover that TR forms at least two different conformers with distinct folding topologies in the insect and mammalian developmental stages of T. brucei. Also, TERT does not significantly affect the RNA folding in vivo, suggesting that the telomerase RNA in T. brucei exists in a conformationally preorganized stable structure. Our observed differences in RNA (TR) folding at two distinct developmental stages of T. brucei suggest that important conformational changes are a key component of T. brucei development.
Keyphrases
- single molecule
- molecular dynamics simulations
- nucleic acid
- single cell
- high throughput
- stem cells
- small molecule
- healthcare
- induced apoptosis
- genome wide
- cancer therapy
- candida albicans
- circulating tumor
- mass spectrometry
- high resolution
- dna binding
- binding protein
- health information
- heat shock
- solid phase extraction