Accurate In Vivo Nanothermometry through NIR-II Lanthanide Luminescence Lifetime.
Meiling TanFeng LiNing CaoHui LiXin WangChenyang ZhangDaniel JaqueGuanying ChenPublished in: Small (Weinheim an der Bergstrasse, Germany) (2020)
Luminescence nanothermometry is promising for noninvasive probing of temperature in biological microenvironment at nanometric spatial resolution. Yet, wavelength- and temperature-dependent absorption and scattering of tissues distort measured spectral profile, rendering conventional luminescence nanothermometers (ratiometric, intensity, band shape, or spectral shift) problematic for in vivo temperature determination. Here, a class of lanthanide-based nanothermometers, which are able to provide precise and reliable temperature readouts at varied tissue depths through NIR-II luminescence lifetime, are described. To achieve this, an inert core/active shell/inert shell structure of tiny nanoparticles (size, 13.5 nm) is devised, in which thermosensitive lanthanide pairs (ytterbium and neodymium) are spatially confined in the thin middle shell (sodium yttrium fluoride, 1 nm), ensuring being homogenously close to the surrounding environment while protected by the outmost calcium fluoride shell (CaF2 , ≈2.5 nm) that shields out bioactive milieu interferences. This ternary structure enables the nanothermometers to consistently resolve temperature changes at depths of up to 4 mm in biological tissues, having a high relative temperature sensitivity of 1.4-1.1% °C-1 in the physiological temperature range of 10-64 °C. These lifetime-based thermosensitive nanoprobes allow for in vivo diagnosis of murine inflammation, mapping out the precise temperature distribution profile of nanoprobes-interrogated area.