Login / Signup

A graphic method for identification of novel glioma related genes.

Yu-Fei GaoYang ShuLei YangYi-Chun HeLi-Peng LiGuaHua HuangHai-Peng LiYang Jiang
Published in: BioMed research international (2014)
Glioma, as the most common and lethal intracranial tumor, is a serious disease that causes many deaths every year. Good comprehension of the mechanism underlying this disease is very helpful to design effective treatments. However, up to now, the knowledge of this disease is still limited. It is an important step to understand the mechanism underlying this disease by uncovering its related genes. In this study, a graphic method was proposed to identify novel glioma related genes based on known glioma related genes. A weighted graph was constructed according to the protein-protein interaction information retrieved from STRING and the well-known shortest path algorithm was employed to discover novel genes. The following analysis suggests that some of them are related to the biological process of glioma, proving that our method was effective in identifying novel glioma related genes. We hope that the proposed method would be applied to study other diseases and provide useful information to medical workers, thereby designing effective treatments of different diseases.
Keyphrases
  • protein protein
  • healthcare
  • small molecule
  • magnetic resonance imaging
  • computed tomography
  • wastewater treatment