Seismic detection of the martian core.
Simon C StählerAmir KhanWilliam Bruce BanerdtPhilippe H LognonnéDomenico GiardiniSavas CeylanMélanie DrilleauA Cecilia DuranRaphaël F GarciaQuancheng HuangDoyeon KimVedran LekicHenri SamuelMartin SchimmelNicholas C SchmerrDavid SollbergerÉléonore StutzmannZongbo XuDaniele AntonangeliConstantinos CharalambousPaul M DavisJessica C E IrvingTaichi KawamuraMartin KnapmeyerRoss R MaguireAngela G MarusiakMark P PanningClément PerrinAna-Catalina PlesaAttilio RivoldiniCedric SchmelzbachGéraldine ZenhäusernÉric BeuclerJohn F ClintonNikolaj DahmenMartin van DrielTamara GudkovaAnna Catherine HorlestonWilliam T PikeMatthieu PlasmanSuzanne E SmrekarPublished in: Science (New York, N.Y.) (2021)
Clues to a planet's geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight's location covers half the surface of Mars, including the majority of potentially active regions-e.g., Tharsis-possibly limiting the number of detectable marsquakes.