Login / Signup

A High-Throughput Phenotyping Tool to Identify Field-Relevant Anthracnose Resistance in White Lupin.

Joris A AlkemadeMonika M MessmerChristine ArnckenAgata LeskaPaolo AnnicchiaricoNelson NazzicariMichał KsiążkiewiczRalf Thomas VoegeleMaria Renate FinckhPierre Hohmann
Published in: Plant disease (2021)
The seed- and air-borne pathogen Colletotrichum lupini, the causal agent of lupin anthracnose, is the most important disease in white lupin (Lupinus albus) worldwide and can cause total yield loss. The aims of this study were to establish a reliable high-throughput phenotyping tool to identify anthracnose resistance in white lupin germplasm and to evaluate a genomic prediction model, accounting for previously reported resistance quantitative trait loci, on a set of independent lupin genotypes. Phenotyping under controlled conditions, performing stem inoculation on seedlings, showed to be applicable for high throughput, and its disease score strongly correlated with field plot disease assessments (r = 0.95, P < 0.0001) and yield (r = -0.64, P = 0.035). Traditional one-row field disease phenotyping showed no significant correlation with field plot disease assessments (r = 0.31, P = 0.34) and yield (r = -0.45, P = 0.17). Genomically predicted resistance values showed no correlation with values observed under controlled or field conditions, and the parental lines of the recombinant inbred line population used for constructing the prediction model exhibited a resistance pattern opposite to that displayed in the original (Australian) environment used for model construction. Differing environmental conditions, inoculation procedures, or population structure may account for this result. Phenotyping a diverse set of 40 white lupin accessions under controlled conditions revealed eight accessions with improved resistance to anthracnose. The standardized area under the disease progress curves (sAUDPC) ranged from 2.1 to 2.8, compared with the susceptible reference accession with a sAUDPC of 3.85. These accessions can be incorporated into white lupin breeding programs. In conclusion, our data support stem inoculation-based disease phenotyping under controlled conditions as a time-effective approach to identify field-relevant resistance, which can now be applied to further identify sources of resistance and their underlying genetics.
Keyphrases
  • high throughput
  • single cell
  • public health
  • mass spectrometry
  • machine learning
  • deep learning
  • high resolution
  • genetic diversity