Metal-Organic Framework-Derived Nitrogen-Doped Cobalt Nanocluster Inlaid Porous Carbon as High-Efficiency Catalyst for Advanced Potassium-Sulfur Batteries.
Xiaoli GeHaoxiang DiPeng WangXianguang MiaoPeng ZhangHuiyang WangJingyun MaLong-Wei YinPublished in: ACS nano (2020)
Despite high theoretical capacity and earth-abundant resources, the potential industrialization of potassium-sulfur (K-S) batteries is severely plagued by poor electrochemical reaction kinetics and a parasitic shuttle effect. Herein, a facile low-temperature pyrolysis strategy is developed to synthesize N-doped Co nanocluster inlaid porous N-doped carbon derived from ZIF-67 as catalytic cathodes for K-S batteries. To maximize the utilization efficiency, the size of Co nanoparticles can be tuned from 7 nm to homogeneously distributed 3 nm clusters to create more active sites to regulate affinity for S/polysulfides, improving the conversion reaction kinetics between captured polysulfides and K2S3/S, fundamentally suppressing the shuttle effect. Cyclic voltammetry curves, Tafel plots, electrochemical impedance spectroscopy, and density functional theory calculations ascertain that 3 nm Co clusters in S-N-Cos-C cathodes exhibit superior catalytic activity to ensure low charge transfer resistance and energy barriers, enhanced exchange current density, and improved conversion reaction rate. The constructed S-N-Cos-C cathode delivers a superior reversible capacity of 453 mAh g-1 at 50 mA g-1 after 50 cycles, a dramatic rate capacity of 415 mAh g-1 at 400 mA g-1, and a long cycling stability. This work provides an avenue to make full use of high catalytic Co nanoclusters derived from metal-organic frameworks.
Keyphrases
- metal organic framework
- density functional theory
- high efficiency
- solid state
- molecular dynamics
- photodynamic therapy
- gold nanoparticles
- ion batteries
- label free
- electron transfer
- ionic liquid
- signaling pathway
- molecularly imprinted
- wastewater treatment
- quantum dots
- sensitive detection
- magnetic resonance
- high intensity
- single molecule
- mass spectrometry
- heavy metals
- sewage sludge
- solar cells
- tissue engineering