Login / Signup

Experimental Approach to the Study of Anharmonicity in the Infrared Spectrum of Pyrene from 14 to 723 K.

Shubhadip ChakrabortyGiacomo MulasKarine DemykChristine Joblin
Published in: The journal of physical chemistry. A (2019)
Quantifying the effect of anharmonicity on the infrared spectrum of large molecules such as polycyclic aromatic hydrocarbons (PAHs) at high temperatures is the focus of a number of theoretical and experimental studies, many of them motivated by astrophysical applications. We recorded the IR spectrum of pyrene C16H10 microcrystals embedded in KBr pellets over a wide range of temperatures (14-723 K) and studied the evolution of band positions, widths, and integrated intensities with temperature. We identified jumps for some of the spectral characteristics of some bands in the 423-473 K range. These were attributed to a change of phase from crystal to molten in condensed pyrene, which appears to affect more strongly bands involving large CH motions. Empirical anharmonicity factors that quantify the linear evolution of band positions and widths with temperature for values larger than ∼150-250 K, depending on the band, were retrieved from both phases and averaged to provide recommended values for these anharmonicity factors. The derived values were found to be consistent with available gas phase data. We conclude about the relevance of the methodology to produce data that can be compared with calculated anharmonic IR spectra and provide input for models that simulate the IR emission of astro-PAHs.
Keyphrases