Login / Signup

Gamma and infra-slow oscillations shape neuronal firing in the rat subcortical visual system.

Lukasz ChrobokKatarzyna Palus-ChramiecJagoda Stanislawa Jeczmien-LazurTomasz BłasiakMarian Henryk Lewandowski
Published in: The Journal of physiology (2018)
The physiological function of rhythmic firing in the neuronal networks of sensory systems has been linked with information coding. Also, neuronal oscillations in different frequency bands often change as a signature of brain state or sensory processing. Infra-slow oscillation (ISO) in the neuronal firing dependent on the retinal network has been described previously in the structures of the subcortical visual system. In the present study, we show for the first time that firing of ISO neurons in the lateral geniculate nucleus is also characterized by a harmonic discharge pattern (i.e. action potentials are separated by the intervals governed by fundamental frequency in the gamma range: ∼35 Hz). A similar phenomenon was recently described in the suprachiasmatic nuclei of the hypothalamus: the master biological clock. We found that both gamma and ISO rhythms were synchronized within and between ipsilateral nuclei of the subcortical visual system and were dependent on the retinal activity of the contralateral eye. These oscillatory patterns were differentially influenced by transient and prolonged light stimulation with respect to both frequency change direction and sustainability. The results of the present study show that the firing pattern of neurons in the subcortical visual system is shaped by oscillations from infra-slow and gamma frequency bands that are plausibly generated by the retinal network. Additionally, the results demonstrate that both rhythms are not a distinctive feature of image or non-image forming visual systems but, instead, they comprise two channels carrying distinctive properties of photic information.
Keyphrases