Login / Signup

Kinematics and metabolic cost of running on an irregular treadmill surface.

Alyssa M GantzTimothy R Derrick
Published in: Journal of sports sciences (2017)
The purpose of this study was to investigate the kinematic and metabolic effects of running on an irregular surface. We also examined how altering the frontal plane foot angle (inversion/eversion) at contact using real-time visual feedback would affect these other variables. Sixteen participants completed three running bouts lasting 5-7 minutes each on an irregular surface (IS) treadmill, a traditional smooth surface (SS) treadmill, and on SS while receiving visual feedback of the frontal plane foot angle at contact (SSF) with a goal of matching IS foot angle on SS. Frontal plane foot angle increased 40% from IS to SS (IS: 8.4 ± 4.09°, SS: 11.8 ± 4.52°, P < 0.0001, ES 1.40). Knee flexion angle at contact decreased 33% from IS to SS (IS: 9.2 ± 4.88°, SS: 6.2 ± 5.03°, P < 0.0001, ES 1.30). Rate of oxygen consumption decreased by 10% from IS to SS (IS: 37.9 ± 5.68 ml·kg-1·min-1, SS: 34.1 ± 5.07 ml·kg-1·min-1, P < 0.0001, ES 3.05). PSD of leg accelerations decreased by 38% (IS: 0.17 ± 0.07 g2/Hz, SS: 0.106 ± 0.05 g2/Hz, P < 0.000, ES 1.69). Frontal plane foot angle decreased by 14% from SS to SSF (SS: 11.8 ± 4.52°, SSF: 10.1 ± 4.42°, P = 0.027. ES 0.62) but did not result in significant changes in any other variables. There were no significant differences in shock attenuation between any conditions (IS: -9.8 ± 2.26 dB, SS: -9.5 ± 3.12 dB, SSF: -9.9 ± 2.62 dB, P = 0.671). Running with greater eversion on the irregular surface may be an attempt by runners to reduce the perceived potential of an inversion ankle sprain. As a partial compensation for the decreased foot angle, runners increased knee flexion. This maintained shock attenuation but increased the rate of oxygen consumption. Altering the foot angle at contact using feedback on the SS caused the knee angle at contact to increase, but did not change shock attenuation or metabolic cost.
Keyphrases