Login / Signup

Routes to Heterotrinuclear Metal Siloxide Complexes for Cooperative Activation of O2.

Marie-Louise WindSantina HoofBeatrice Braun-CulaChristian HerwigChristian Limberg
Published in: Inorganic chemistry (2020)
The assembly of heterometallic complexes capable of activating dioxygen is synthetically challenging. Here, we report two different approaches for the preparation of heterometallic superoxide complexes [PhL2CrIII-η1-O2][MX]2 (PhL = -OPh2SiOSiPh2O-, MX+ = [CoCl]+, [ZnBr]+, [ZnCl]+) starting from the CrII precursor complex [PhL2CrII]Li2(THF)4. The first strategy proceeds via the exchange of Li+ by [MX]+ through the addition of MX2 to [PhL2CrII]Li2(THF)4 before the reaction with dioxygen, whereas in the second approach a salt metathesis reaction is undertaken after O2 activation by adding MX2 to [PhL2CrIII-η1-O2]Li2(THF)4. The first strategy is not applicable in the case of redox-active metal ions, such as Fe2+ or Co2+, as it leads to the oxidation of the central chromium ion, as exemplified with the isolation of [PhL2CrIIICl][CoCl]2(THF)3. However, it provided access to the hetero-bimetallic complexes [PhL2CrIII-η1-O2][MX]2 ([MX]+ = [ZnBr]+, [ZnCl]+) with redox-inactive flanking metals incorporated. The second strategy can be applied not only for redox-inactive but also for redox-active metal ions and led to the formation of chromium(III) superoxide complexes [PhL2CrIII-η1-O2][MX]2 (MX+ = [ZnCl]+, [ZnBr]+, [CoCl]+). The results of stability and reactivity studies (employing TEMPO-H and phenols as substrates) as well as a comparison with the alkali metal series (M+ = Li+, Na+, K+) confirmed that although the stability is dependent on the Lewis acidity of the counterions M and the number of solvent molecules coordinated to those, the reactivity is strongly dependent on the accessibility of the superoxide moiety. Consequently, replacement of Li+ by XZn+ in the superoxides leads to more stable complexes, which at the same time behave more reactive toward O-H groups. Hence, the approaches presented here broaden the scope of accessible heterometallic O2 activating compounds and provide the basis for further tuning of the reactivity of [RL2CrIII-η1-O2]M2 complexes.
Keyphrases
  • ion batteries
  • hydrogen peroxide
  • electron transfer
  • solid state
  • signaling pathway
  • quantum dots
  • heavy metals
  • climate change
  • drinking water
  • visible light