Login / Signup

The contest between artificial management and natural environment determines the adaptive strategies of leaf morphogenesis in Sabina chinensis.

Jing JiaGuojuan QuPeng JiaDezhi LiYifei Yao
Published in: Tree physiology (2024)
Sabina chinensis is a typically heteromorphic leaf evergreen tree worldwide with both ornamental and ecological value. However, the shaping mechanism of heteromorphic leaves of S. chinensis and its adaptability to environment are important factors determining its morphology. The morphological change of S. chinensis under different habitats (tree around) and treatments (light, pruning and nutrients) was investigated. Our findings suggested that the prickle leaves proportion was associated with low light intensity and soil nutrient scarcity. Stems and leaves are pruned together to form clusters of large prickle leaves, while only pruning leaves often form alternately growing small prickle leaves and scale leaves, and the length of the prickle leaves is between 0.5 cm and 1 cm. The gene expression of prickle leaves is higher than that of scale leaves under adverse environmental conditions, and the gene expression correlations between small prickle leaf and scale leaf were the highest. Homologous and heterologous mutants of gene structure in prickle leaves were larger than those in scale leaves. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed that phenylpropanone and flavonoid biosynthesis were common enrichment pathways, and that the enrichment genes were mainly related to metabolism, genetic information processing and organismal systems. Therefore, we concluded that the occurrence of the heteromorphic leaf phenomenon was related to the changes in photosynthesis, mechanical damage and nutrient supplementation. The organic matter in the S. chinensis prickle leaves was reduced under environmental stresses, and it will be allocated to the expression of prickle leaf or protective cuticles formation.
Keyphrases
  • gene expression
  • essential oil
  • genome wide
  • healthcare
  • emergency department
  • dna damage
  • heavy metals
  • risk assessment
  • mass spectrometry
  • binding protein
  • life cycle