Generalized Synthesis of Ternary Sulfide Hollow Structures with Enhanced Photocatalytic Performance for Degradation and Hydrogen Evolution.
Shuoping DingXiufan LiuYiqiu ShiYe LiuTengfei ZhouZai-Ping GuoJuncheng HuPublished in: ACS applied materials & interfaces (2018)
A series of ternary sulfide hollow structures have been successfully prepared by a facile glutathione (GSH)-assisted one-step hydrothermal route, where GSH acts as the source of sulfur and bubble template. We demonstrate the feasibility and versatility of this in situ gas-bubble template strategy by the fabrication of novel hollow structures of MIn2S4 (M = Cd, Zn, Ca, Mg, and Mn). Interestingly, with the reaction time varying, the hierarchical CdIn2S4 microspheres with controlled internal structures can be regulated from yolk-shell, smaller yolk-shell (yolk-shell with shrunk yolk), hollow, to solid. Under visible-light irradiation, all of our prepared CdIn2S4 samples with different morphologies were photoactivated. In virtue of the appealing hierarchical hollow structure, the yolk-shell-structured CdIn2S4 microspheres exhibited the optimal photocatalytic activity and excellent durability for both the X3B degradation and H2 evolution, which can be ascribed to the synergy-promoting effect of the small crystallite size together with the unique structural advantages of the yolk-shell structure. Thus, we hypothesize that this proof-of-concept strategy paves an example of rational design of hollow structured ternary or multinary sulfides with superior photochemical performance, holding great potential for future multifunctional applications.
Keyphrases