Login / Signup

Structured Liquid Droplets as Chemical Sensors that Function Inside Living Cells.

Uttam MannaYashira M ZavalaNicholas L AbbottDavid M Lynn
Published in: ACS applied materials & interfaces (2021)
We report that micrometer-scale droplets of thermotropic liquid crystals (LCs) can be positioned inside living mammalian cells and deployed as chemical sensors to report the presence of toxins in extracellular environments. Our approach exploits droplets of LC enclosed in semi-permeable polymer capsules that enable internalization by cells. The LC droplets are stable in intracellular environments, but undergo optical changes upon exposure of cells to low, sub-lethal concentrations of toxic amphiphiles. Remarkably, LC droplets in intracellular environments respond to extracellular analytes that do not generate an LC response in the absence of cellular internalization. They also do not respond to other chemical stimuli or processes associated with cell growth or manipulation in culture. Our results suggest that droplet activation involves the transport and co-adsorption of amphiphilic toxins and other lipophilic cell components to the surfaces of internalized droplets. This work provides fundamentally new designs of biotic-abiotic systems that can report sensitively and selectively on the presence of select chemical agents outside cells and provides a foundation for the design of structured liquid droplets that can sense and report on other biochemical or metabolic processes inside cells.
Keyphrases