Dual sourcing inventory management with nonconsecutive lead times from a supply chain perspective: a numerical study.
Younes HamdouchYoussef BoulaksilKilani GhoudiPublished in: OR spectrum : quantitative approaches in management (2023)
We study a stochastic multi-period two-echelon dual sourcing inventory system where the buyer can source a product from two different suppliers: a regular and an expedited supplier. The regular supplier is a low-cost offshore supplier, whereas the expedited supplier is a responsive nearshore supplier. Such dual sourcing inventory systems have been well studied in the literature, mostly being solely evaluated from the buyer's perspective. Since the buyer's decisions have an impact on the supply chain profit, we adopt the perspective of the entire supply chain, i.e., by taking the suppliers explicitly into consideration. In addition, we study this system for general (nonconsecutive) lead times for which the optimal policy is unknown or very complex. We numerically compare the performance of two different policies in a two-echelon setting: the Dual-Index Policy (DIP) and the Tailored Base-Surge Policy (TBS). From earlier studies we know that when the lead time difference is one period, DIP is optimal from the buyer's perspective, but not necessarily from the supply chain perspective. On the other hand, when the lead time difference grows to infinity, TBS becomes optimal for the buyer. In this paper, we evaluate the policies numerically (under various conditions) and we show that from a supply chain perspective , TBS typically outperforms DIP at a limited lead time difference of a few time periods. Based on data collected from 51 manufacturing firms, the results of our paper imply for many supply chains with a dual sourcing setting that TBS quickly becomes a beneficial policy alternative, especially given its simple and appealing structure.