Login / Signup

Ribosomal RNA Modulates Aggregation of the Podospora Prion Protein HET-s.

Yanhong PangPetar KovachevSuparna Sanyal
Published in: International journal of molecular sciences (2020)
The role of the nucleic acids in prion aggregation/disaggregation is becoming more and more evident. Here, using HET-s prion from fungi Podospora anserina (P. anserina) as a model system, we studied the role of RNA, particularly of different domains of the ribosomal RNA (rRNA), in its aggregation process. Our results using Rayleigh light scattering, Thioflavin T (ThT) binding, transmission electron microscopy (TEM) and cross-seeding assay show that rRNA, in particular the domain V of the major rRNA from the large subunit of the ribosome, substantially prevents insoluble amyloid and amorphous aggregation of the HET-s prion in a concentration-dependent manner. Instead, it facilitates the formation of the soluble oligomeric "seeds", which are capable of promoting de novo HET-s aggregation. The sites of interactions of the HET-s prion protein on domain V rRNA were identified by primer extension analysis followed by UV-crosslinking, which overlap with the sites previously identified for the protein-folding activity of the ribosome (PFAR). This study clarifies a missing link between the rRNA-based PFAR and the mode of propagation of the fungal prions.
Keyphrases
  • protein protein
  • binding protein
  • electron microscopy
  • nucleic acid
  • small molecule
  • mouse model
  • molecular dynamics simulations
  • room temperature
  • dna binding
  • protein kinase