Login / Signup

Variability in the analysis of a single neuroimaging dataset by many teams.

Rotem Botvinik-NezerFelix HolzmeisterColin F CamererAnna DreberJuergen HuberMagnus JohannessonMichael KirchlerRoni IwanirJeanette A MumfordR Alison AdcockPaolo AvesaniBlazej M BaczkowskiAahana BajracharyaLeah BakstSheryl BallMarco BarilariNadège BaultDerek BeatonJulia BeitnerRoland G BenoitRuud M W J BerkersJamil P BhanjiBharat B BiswalSebastian Bobadilla-SuarezTiago BortoliniKatherine L BottenhornAlexander BowringSenne BraemHayley R BrooksEmily G BrudnerCristian B CalderonJulia A CamilleriJaime J CastrellonLuca CecchettiEdna C CieslikZachary J ColeOlivier CollignonRobert W CoxWilliam Andrew CunninghamStefan CzoschkeKamalaker DadiCharles P DavisAlberto De LucaMauricio R DelgadoLysia DemetriouJeffrey B DennisonXin DiErin W DickieEkaterina DobryakovaClaire L DonnatJuergen DukartNiall W DuncanJoke DurnezAmr EedSimon B EickhoffAndrew ErhartLaura FontanesiG Matthew FrickeShiguang FuAdriana GalvánRémi GauSarah GenonTristan GlatardEnrico GlereanJelle J GoemanSergej A E GolowinCarlos González-GarcíaKrzysztof J GorgolewskiCheryl L GradyMikella A GreenJoão F Guassi MoreiraOlivia GuestShabnam HakimiPaul J HamiltonRoeland HancockGiacomo HandjarasBronson B HarryColin HawcoPeer HerholzGabrielle HermanStephan HeunisFelix HoffstaedterJeremy HogeveenSusan P HolmesChuan-Peng HuScott A HuettelMatthew E HughesVittorio IacovellaAlexandru D IordanPeder Mortvedt IsagerAyse Ilkay IsikAndrew JahnMatthew R JohnsonTom JohnstoneMichael J E JosephAnthony C JulianoJoseph W KableMichalis KassinopoulosCemal KobaXiang-Zhen KongTimothy R KoscikNuri Erkut KucukboyaciBrice A KuhlSebastian KupekAngela R LairdClaus LammRobert LangnerNina LauharatanahirunHongmi LeeSangil LeeAlexander LeemansAndrea LeoElise LesageFlora LiMonica Y C LiPhui Cheng LimEvan N LintzSchuyler W LiphardtAnnabel B Losecaat-VermeerBradley C LoveMichael L MackNorberto MalpicaTheo F MarinsCamille MaumetKelsey R McDonaldJoseph T McGuireHelena MeleroAdriana S Méndez LealBenjamin MeyerKristin N MeyerPaul Glad MihaiGeorgios D MitsisJorge MollDylan M NielsonGustav NilsonneMichael P NotterEmanuele OlivettiAdrian I OnicasPaolo PapaleKaustubh R PatilJonathan E PeelleAlexandre PérezDoris PischeddaJean-Baptiste PolineYanina PrystaukaShruti RayPatricia A Reuter-LorenzRichard C ReynoldsEmiliano RicciardiJenny R RieckAnais M Rodriguez-ThompsonAnthony RomynTaylor SaloGregory R Samanez-LarkinEmilio Sanz-MoralesMargaret L SchlichtingDouglas H SchultzQiang ShenMargaret A SheridanJennifer A SilversKenny SkagerlundAlec SmithDavid V SmithPeter Sokol-HessnerSimon R SteinkampSarah M TashjianBertrand ThirionJohn N ThorpGustav TinghögLoreen TisdallSteven H TompsonClaudio Toro-SereyJuan Jesus Torre TresolsLeonardo TozziVuong Hung TruongLuca TurellaAnna E van 't VeerTom VergutsJean M VettelSagana VijayarajahKhoi VoMatthew B WallWouter D WeedaSusanne WeisDavid J WhiteDavid WisniewskiAlba Xifra-PorxasEmily A YearlingSangsuk YoonRui YuanKenneth S L YuenLei ZhangXu ZhangJoshua E ZoskyThomas E NicholsRussell A PoldrackTom Schonberg
Published in: Nature (2020)
Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses1. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data. This flexibility resulted in sizeable variation in the results of hypothesis tests, even for teams whose statistical maps were highly correlated at intermediate stages of the analysis pipeline. Variation in reported results was related to several aspects of analysis methodology. Notably, a meta-analytical approach that aggregated information across teams yielded a significant consensus in activated regions. Furthermore, prediction markets of researchers in the field revealed an overestimation of the likelihood of significant findings, even by researchers with direct knowledge of the dataset2-5. Our findings show that analytical flexibility can have substantial effects on scientific conclusions, and identify factors that may be related to variability in the analysis of functional magnetic resonance imaging. The results emphasize the importance of validating and sharing complex analysis workflows, and demonstrate the need for performing and reporting multiple analyses of the same data. Potential approaches that could be used to mitigate issues related to analytical variability are discussed.
Keyphrases
  • magnetic resonance imaging
  • data analysis
  • computed tomography
  • healthcare
  • machine learning
  • risk assessment
  • magnetic resonance
  • artificial intelligence
  • adverse drug
  • climate change
  • human health