Amphiphilic Gemini Iridium(III) Complex as a Mitochondria-Targeted Theranostic Agent for Tumor Imaging and Photodynamic Therapy.
Sili YiZhen LuJin ZhangJun WangZenghong XieLinxi HouPublished in: ACS applied materials & interfaces (2019)
Clinical diagnostics and therapeutics of tumors are significantly benefitted by the development of multifunctional theranostic agents, which integrate tumor targeting, imaging, and therapeutics. However, the integration of imaging and therapy functionalities to a unimolecular framework remains a great challenge. Herein, a family of amphiphilic gemini iridium(III) complexes (GIC), Ir1-Ir6, are synthesized and characterized. The presence of quaternary ammonium (QA) groups endows GIC with adjustable water solubility and excellent self-assembly properties. Spectroscopic and computational results reveal that introducing QA groups into cyclometalating ligands (ĈN ligands) can overcome the drawback of aggregation-caused emission quenching and ensure Ir1-Ir3 with high emission intensity and excellent singlet oxygen (1O2) generation ability in aqueous media. Cell-based assays indicate that Ir3 shows higher cellular uptake efficiency and localizes specifically in the mitochondria, as well as exhibits outstanding photostability and an impressive phototoxicity index with satisfactory performance in mitochondria-targeted imaging and photodynamic therapy (PDT) of tumor cells. Furthermore, in vivo studies further prove that Ir3 possesses excellent antitumor activity and remarkably inhibits the growth of the HepG2 cells under PDT treatment. Consequently, this study presents a promising strategy for designing clinical application potential multifunctional iridium complex theranostic agents for mitochondria-targeted imaging and PDT in a single molecular framework.