Login / Signup

Regulation of MicroRNAs After Spinal Cord Injury in Adult Zebrafish.

Wenyuan ShenJun CaiJinze LiWenchang LiPengcheng ShiXiumei ZhaoShiqing Feng
Published in: Journal of molecular neuroscience : MN (2024)
Spinal cord injury (SCI) is a central nerve injury that often leads to loss of motor and sensory functions at or below the level of the injury. Zebrafish have a strong ability to repair after SCI, but the role of microRNAs (miRNAs) after SCI remains unclear. Locomotor behavior analysis showed that adult zebrafish recovered about 30% of their motor ability at 2 weeks and 55% at 3 weeks after SCI, reflecting their strong ability to repair SCI. Through miRNA sequencing, mRNA sequencing, RT-qPCR experiment verification, and bioinformatics predictive analysis, the key miRNAs and related genes in the repair of SCI were screened. A total of 38 miRNAs were significantly different, the top ten miRNAs were verified by RT-qPCR. The prediction target genes were verified by the mRNAs sequencing results at the same time point. Finally, 182 target genes were identified as likely to be networked regulated by the 38 different miRNAs. GO and KEGG enrichment analysis found that miRNAs targeted gene regulation of many key pathways, such as membrane tissue transport, ribosome function, lipid binding, and peroxidase activity. The PPI network analysis showed that miRNAs were involved in SCI repair through complex network regulation, among which dre-miR-21 may enhance cell reversibility through nop56, and that dre-miR-125c regulates axon growth through kpnb1 to repair SCI.
Keyphrases