Monoclonal Antibody Discovery Based on Precise Selection of Single Transgenic Hybridomas with an On-Cell-Surface and Antigen-Specific Anchor.
Yuan LiPeipei LiYuebin KeXuezhi YuWenbo YuKai WenJianzhong ShenZhanhui WangPublished in: ACS applied materials & interfaces (2022)
Hybridoma technology is widely used for monoclonal antibody (mAb) discovery, whereas the generation and identification of single hybridomas by the limiting dilution method (LDM) are tedious, inefficient, and time- and cost-consuming, especially for hapten molecules. Here, we describe a single transgenic hybridoma selection method (STHSM) that employs a transgenic Sp2/0 with an artificial and stable on-cell-surface anchor. The anchor was designed by combining the truncated variant transmembrane domain of EGFR with a biotin acceptor peptide AVI-tag, which was stably integrated into the genome of Sp2/0 via a piggyBac transposon. To ensure the subsequent precise selection of the hybridoma, the number of on-cell-surface anchors of the transfected Sp2/0 for fusion with immunized splenocytes was further normalized by flow cytometry at the single cell level. Then the single antigen-specific transgenic hybridomas were precisely identified and automatically selected using a CellenONE platform based on the fluorescence assay of the on-cell-surface anchor with the corresponding secreted antigen-specific mAb. The STHSM produced 579 single chloramphenicol (CAP)-specific transgenic hybridomas with a positive rate of 62.7% in 10 plates within 2 h by one-step selection, while only 12 single CAP-specific hybridomas with a positive rate of 6.3% in 40 plates required at least 32 days using the LDM with multiple subcloning steps. The best affinity of mAbs from the STHSM was more than 2-fold higher than that of those from the LDM, and this was mainly due to the preaffinity selection based on the on-cell-surface anchors and more interactions between the mAb and CAP. Then the mAbs from the STHSM and LDM were used to develop an immunoassay for CAP in spiked and natural biological samples. The method displayed satisfactory sensitivity, accuracy, and precision, demonstrating that the STHSM we developed is a versatile, practical, and efficient method for mAb discovery.