Login / Signup

Watershed influences on mercury in tributaries to Lake Ontario.

Joseph S DenkenbergerHabibollah FakhraeiBrian BranfireunMario MontesdeocaCharles T Driscoll
Published in: Ecotoxicology (London, England) (2020)
Mercury (Hg) concentrations and speciation were measured in nine tributaries to Lake Ontario as part of two independent field-sampling programs. Among the study tributaries, mean total Hg (THg) concentrations ranged from 0.9 to 2.6 ng/L; mean dissolved Hg (THgD) ranged from 0.5 to 1.5 ng/L; mean particulate Hg (THgP) ranged from 0.3 to 2.0 ng/L; and mean methylmercury (MeHg) ranged from 0.06 to 0.14 ng/L. Watershed land cover, total suspended solids (TSS), and dissolved organic carbon (DOC) were evaluated as potential controls of tributary Hg. Significant relationships between THgD and DOC were limited, whereas significant relationships between THgP and TSS were common across watersheds. Total suspended solids was strongly correlated with the percentage of agricultural land in watersheds. Particle enrichment of Hg (mass Hg/mass TSS) was highly variable, but distinctly higher in US tributaries likely due to higher TSS in Canadian tributaries associated with higher urban and agricultural land cover. MeHg was largely associated with the aqueous phase, and MeHg as a fraction of THg was positively correlated to percent open water coverage in the watershed. Wetland cover was positively correlated to THg and MeHg concentrations, while urban land cover was only related to higher THgP.
Keyphrases
  • water quality
  • climate change
  • fluorescent probe
  • aqueous solution
  • living cells
  • risk assessment
  • organic matter
  • human health
  • heavy metals
  • public health
  • health insurance