Login / Signup

Interception of Transient Allyl Radicals with Low-Valent Allylpalladium Chemistry: Tandem Pd(0/II/I)-Pd(0/II/I/II) Cycles in Photoredox/Pd Dual-Catalytic Enantioselective C(sp 3 )-C(sp 3 ) Homocoupling.

Bo LiHong-Hao ZhangYongrui LuoShouyun YuWilliam A Goddard IiiYanfeng Dang
Published in: Journal of the American Chemical Society (2024)
We present comprehensive computational and experimental studies on the mechanism of an asymmetric photoredox/Pd dual-catalytic reductive C(sp 3 )-C(sp 3 ) homocoupling of allylic electrophiles. In stark contrast to the canonical assumption that photoredox promotes bond formation via facile reductive elimination from high-valent metal-organic species, our computational analysis revealed an intriguing low-valent allylpalladium pathway that features tandem operation of Pd(0/II/I)-Pd(0/II/I/II) cycles. Specifically, we propose that (i) the photoredox/Pd system enables the in situ generation of allyl radicals from low-valent Pd(I)-allyl species, and (ii) effective interception of the fleeting allyl radical by the chiral Pd(I)-allyl species results in the formation of an enantioenriched product. Notably, the cooperation of the two pathways highlights the bifunctional role of Pd(I)-allyl species in the generation and interception of transient allyl radicals. Moreover, the mechanism implies divergent substrate-activation modes in this homocoupling reaction, suggesting a theoretical possibility for cross-coupling. Combined, the current study offers a novel mechanistic hypothesis for photoredox/Pd dual catalysis and highlights the use of low-valent allylpalladium as a means to efficiently intercept radicals for selective asymmetric bond constructions.
Keyphrases
  • visible light
  • magnetic resonance imaging
  • mass spectrometry
  • genetic diversity
  • contrast enhanced