Login / Signup

β-Arrestin1 and 2 differentially regulate PACAP-induced PAC1 receptor signaling and trafficking.

Yusuke ShintaniAtsuko Hayata-TakanoKeita MoriguchiTakanobu NakazawaYukio AgoAtsushi KasaiKaoru SeirikiNorihito ShintaniHitoshi Hashimoto
Published in: PloS one (2018)
A pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor, PAC1R, is coupled with multiple signal transduction pathways including stimulation of adenylate cyclase, phospholipase C and extracellular-signal regulated kinase (ERK)1/2. PAC1R has been shown to exert its long-lasting and potent signals via β-arrestin1 and β-arrestin2. However, the precise roles of the two β-arrestin isoforms in PACAP-PAC1R signaling remain unclear. Here we examined the interaction between the two β-arrestin isoforms and PAC1R, β-arrestin-dependent PAC1R subcellular localization and ERK1/2 activation. Upon PACAP stimulation, although PAC1R similarly interacted with β-arrestin1 and β-arrestin2 in HEK293T cells, the complex of PAC1R and β-arrestin2 was translocated from the cell surface into cytosol, but that of β-arrestin1 remained in the cell surface regions in HeLa cells and mouse primary cultured neurons. Silencing of β-arrestin2 blocked PACAP-induced PAC1R internalization and ERK1/2 phosphorylation, but silencing of β-arrestin1 increased ERK1/2 phosphorylation. These results show that β-arrestin1 and β-arrestin2 exert differential actions on PAC1R internalization and PAC1R-dependent ERK1/2 activation, and suggest that the two β-arrestin isoforms may be involved in fine and precise tuning of the PAC1R signaling pathways.
Keyphrases
  • signaling pathway
  • pi k akt
  • cell surface
  • endothelial cells
  • cell cycle arrest
  • high glucose
  • drug induced
  • diabetic rats
  • stress induced