A High Catalytic Activity Nanozyme Based on Cobalt-Doped Carbon Dots for Biosensor and Anticancer Cell Effect.
Wenjing LuYanjiao GuoJinghua ZhangYongfang YueLi FanFeng LiChuan DongShao Min ShuangPublished in: ACS applied materials & interfaces (2022)
Nanozyme technology as an emerging field has been successfully applied to chemical sensing, biomedicine, and environmental monitoring. It is very significant for the advance of this field to construct nanozymes with high catalytic activity by a simple method and to develop their multifunctional applications. Here, a new type of cobalt-doped carbon dots (Co-CDs) nanozymes was designed using vitamin B 12 and citric acid as the precursors. The homogeneous cobalt doping at carbon nuclear led the Co-CDs to show significant peroxidase-like activity resembling natural metalloenzymes. Based on the high affinity of Co-CDs to H 2 O 2 ( K m = 0.0598 mM), a colorimetric sensor for glucose detection was constructed by combining Co-CDs with glucose oxidase. On account of the high catalytic activity of nanozymes and the cascade strategy, a good linear relationship was obtained from 0.500 to 200 μM, with a detection limit of 0.145 μM. The biosensor has realized the accurate detection of glucose in human serum samples. Moreover, Co-CDs could specifically catalyze H 2 O 2 in cancer cells to generate a variety of reactive oxygen species, leading to the death of cancer cells, which has useful application potential in tumor catalytic therapy. In this work, the catalytic activity of Co-CDs has been adequately exploited, which extends the application of carbon dots in multiple biotechnologies, including biosensing, disease diagnosis, and treatment.
Keyphrases
- quantum dots
- sensitive detection
- loop mediated isothermal amplification
- label free
- visible light
- reactive oxygen species
- blood glucose
- real time pcr
- hydrogen peroxide
- metal organic framework
- reduced graphene oxide
- drug delivery
- human health
- risk assessment
- high resolution
- cell therapy
- type diabetes
- wastewater treatment
- nitric oxide
- blood pressure
- mesenchymal stem cells
- bone marrow
- fluorescent probe
- climate change