Login / Signup

Fast-Disintegrating Nanofibrous Web of Pullulan/Griseofulvin-Cyclodextrin Inclusion Complexes.

Emmy HsiungAsli CelebiogluMehmet Emin KilicEngin DurgunTamer Uyar
Published in: Molecular pharmaceutics (2023)
Griseofulvin (GSF) is one of the most widely used antifungal suffering from low water solubility and limited bioavailability. Here, cyclodextrin (CD) derivatives of hydroxypropyl-beta-CD (HPβCD) known for its high-water solubility were used to form inclusion complexes (ICs) with GSF. Here, the molecular modeling study revealed the more efficient complex formation with 1:2 (guest:CD) stoichiometry, so ICs of GSF-HPβCD were prepared using a 1:2 molar ratio (GSF:HPβCD) and then mixed with pullulan (PULL) to generate nanofibers (NFs) using the electrospinning technique. PULL is a nontoxic water-soluble biopolymer and the ultimate PULL/GSF-HPβCD-IC NF was obtained with a defect-free fiber morphology having 805 ± 180 nm average diameter. The self-standing and flexible PULL/GSF-HPβCD-IC NF was achieved to be produced with a loading efficiency of ∼98% corresponding to ∼6.4% (w/w) of drug content. In comparison, the control sample of PULL/GSF NF was formed with a lower loading efficiency value of ∼72% which equals to ∼4.7% (w/w) of GSF content. Additionally, PULL/GSF-HPβCD-IC NF provided an enhanced aqueous solubility for GSF compared to PULL/GSF NF so a faster release profile with ∼2.5 times higher released amount was obtained due to inclusion complexation between GSF and HPβCD within the nanofibrous web. On the other hand, both nanofibrous webs rapidly disintegrated (∼2 s) in the artificial saliva medium that mimics the oral cavity environment. Briefly, PULL/GSF-HPβCD-IC NF can be a promising dosage formulation as a fast-disintegrating delivery system for antifungal oral administration owing to the improved physicochemical properties of GSF.
Keyphrases
  • signaling pathway
  • nk cells
  • oxidative stress
  • nuclear factor
  • water soluble
  • single cell
  • photodynamic therapy
  • inflammatory response
  • capillary electrophoresis