Login / Signup

Magnetohydrodynamic Control of Interfacial Degradation in Lithium-Ion Batteries for Fast Charging Applications.

Abhishek SarkarPranav ShrotriyaIkenna C Nlebedim
Published in: ACS applied materials & interfaces (2021)
Interfacial anodic degradation in graphitic materials under fast charging conditions causes severe performance loss and safety hazard in lithium ion batteries. We present a novel method for minimizing the growth of these aging mechanism by application of an external magnetic field. Under magnetic field, paramagnetic lithium ions experience a magnetohydrodynamic force, which rotates the perpendicularly diffusing species and homogenizes the ionic transport. This phenomenon minimizes the overpotential hotspots at the anode/separator interface, consequently reducing SEI growth, lithium plating, and interfacial fracture. In situ electrochemical measurements indicate an improvement in capacity for lithium cobalt oxide/graphite pouch cell (20 mAh) charged from 1-5 C under an applied field of 1.8 kG, with a maximum capacity gain of 22% at 5C. Post-mortem FE-SEM and EDS mapping shows that samples charged with magnetic field have a reduced lithium deposition at 3C and a complete suppression of interfacial fracture at 5C. At 5C, a 24% reduction in the lithium content is observed by performing XPS on the anodic interfacial film. Finally, fast charging performance under variable magnetic field strengths indicate a saturation behavior in capacity at high fields (>2 kG), thereby limiting the field and consequent energy requirements to obtain maximum capacity gain under extreme conditions.
Keyphrases