Supercritical fluid in deep subduction zones as revealed by multiphase fluid inclusions in an ultrahigh-pressure metamorphic vein.
Deshi JinYilin XiaoDong-Bo TanYang-Yang WangXiaoxia WangWancai LiWen SuXiao-Guang LiPublished in: Proceedings of the National Academy of Sciences of the United States of America (2023)
Due to their low viscosity, high mobility, and high element contents, supercritical fluids are important agents in the cycling of elements. However, the chemical composition of supercritical fluids in natural rocks is poorly understood. Here, we investigate well-preserved primary multiphase fluid inclusions (MFIs) from an ultrahigh-pressure (UHP) metamorphic vein of the Bixiling eclogite in Dabieshan, China, thus providing direct evidence for the components of supercritical fluid occurring in a natural system. Via the 3D modeling of MFIs by Raman scanning, we quantitatively determined the major composition of the fluid trapped in the MFIs. Combined with the peak-metamorphic pressure-temperature conditions and the cooccurrence of coesite, rutile, and garnet, we suggest that the trapped fluids in the MFIs represent supercritical fluids in a deep subduction zone. The strong mobility of the supercritical fluids with respect to carbon and sulfur suggests that such fluids have profound effects on global carbon and sulfur cycling.