Login / Signup

Pharmacokinetics and Tissue Distribution of Bee Venom-Derived Phospholipase A2 Using a Sandwich ELISA after Subcutaneous Injection of New Composition Bee Venom in Rats.

Soon Uk ChaeSeong Jun JoChae Bin LeeSangyoung LeeJi-Hyun ParkJin-Su JungEui-Suk ParkHyunsu BaeSoo Kyung Bae
Published in: International journal of molecular sciences (2023)
Bee venom is a traditional drug used to treat the nervous system, musculoskeletal system, and autoimmune diseases. A previous study found that bee venom and one of its components, phospholipase A2, can protect the brain by suppressing neuroinflammation and can also be used to treat Alzheimer's disease. Thus, new composition bee venom (NCBV), which has an increased phospholipase A2 content of up to 76.2%, was developed as a treatment agent for Alzheimer's disease by INISTst (Republic of Korea). The aim of this study was to characterize the pharmacokinetic profiles of phospholipase A2 contained in NCBV in rats. Single subcutaneous administration of NCBV at doses ranging from 0.2 mg/kg to 5 mg/kg was conducted, and pharmacokinetic parameters of bee venom-derived phospholipase A2 (bvPLA2) increased in a dose-dependent manner. Additionally, no accumulation was observed following multiple dosings (0.5 mg/kg/week), and other constituents of NCBV did not affect the pharmacokinetic profile of bvPLA2. After subcutaneous injection of NCBV, the tissue-to-plasma ratios of bvPLA2 for the tested nine tissues were all <1.0, indicating a limited distribution of the bvPLA2 within the tissues. The findings of this study may help understand the pharmacokinetic characteristics of bvPLA2 and provide useful information for the clinical application of NCBV.
Keyphrases
  • healthcare
  • emergency department
  • cognitive decline
  • traumatic brain injury
  • multiple sclerosis
  • mild cognitive impairment
  • drug induced
  • resting state
  • placebo controlled