What was old is new again: thermal adaptation within clonal lineages during range expansion in a fungal pathogen.
Cécile RobinAudrey AndansonGilles Saint-JeanOlivier FabreguettesCyril DutechPublished in: Molecular ecology (2017)
Range-expanding species are expected to gain an increasing importance in the context of global change. They provide a great opportunity to study contemporary evolutionary changes and to unravel the mechanisms of evolution. Cryphonectria parasitica, the causal agent of chestnut blight, originating from Asia, has been spread since the beginning of the 20th century into different continents. We took advantage of the C. parasitica recent emergence in northern France to study the changes in population genetic structure and in phenotypic traits along this colonization and climatic gradient. Four hundred twenty-seven C. parasitica isolates were sampled in 47 chestnut sites in northern France. The C. parasitica outbreak in the north was found to be due to the expansion of five dominant clonal groups from southern France and to the emergence of a few rare recombined genotypes. The evolutionary changes during C. parasitica range expansion were studied by analysing phenotypic changes in isolates from the same clonal lineage, with or without a geographic shift. Growth rates were assessed in vitro, at four temperatures. The northern isolates grew faster at 12 and 15 °C and more slowly at 28 and 32 °C than the southern isolates. These results strongly suggest local adaptation to low temperatures in C. parasitica, with a trade-off of slower growth at high temperatures. They also reflect the high evolutionary potential of C. parasitica along a colonization gradient and show that clonal evolution is not a limitation for the rapid thermal adaptation of this invasive fungal species.