Synthesis, structural, spectral, antioxidant, bioactivity and molecular docking investigations of a novel triazole derivative.
Can AlaşalvarNuri ÖztürkHalil GökceAytaç GüderEmre MenteşeHakan BektaşPublished in: Journal of biomolecular structure & dynamics (2021)
The structural, spectroscopic and electronic properties of 4-(4-nitrophenyl)-5-(pyridin-3-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione have been analyzed by using single crystal X-ray diffraction (SCXRD), 1H and 13C NMR chemical shifts and FT-IR spectroscopic methods both theoretically and experimentally. The tautomeric (thiol and thione) energetic analysis results, structural optimization parameters (bond lengths and angles), vibrational wavenumbers, proton and carbon NMR chemical shifts, UV-Vis. parameters, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) analyses and Molecular Electrostatic Potential (MEP) surface have been calculated by using DFT/B3LYP quantum chemical method with 6-311++G(2d,2p) basis set to compare with the experimental results. The computed geometry parameters, vibrational wavenumbers, and NMR chemical shifts have been in good agreement with the experimental results. It should be noted that the radical scavenging activities of the title compound have been evaluated by using different test methods i.e. 2,2-Diphenyl-1-picrylhydrazyl (DPPH), N,N-dimethyl-p-phenylenediamine (DMPD) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS). According to obtained results, the title compound displayed DPPH (SC50 19.42 ± 0.11 μg/mL), DMPD (SC50 21.13 ± 0.08 μg/mL) and ABTS (SC50 38.17 ± 0.25 μg/mL) scavenging activities. Also, these results have been compared with Butylated hydroxyanisole (BHA), Rutin (RUT) and Trolox (TRO) used as standard compounds. The physicochemical, pharmacokinetic, and toxicity features of the compound have been determined by using drug-likeness and in silico ADMET investigations. The interaction results with SARS-CoV-2 main protease (Mpro) of the title ligand compound have been analyzed via the help of molecular docking study.Communicated by Ramaswamy H. Sarma.
Keyphrases
- molecular docking
- molecular dynamics simulations
- high resolution
- sars cov
- magnetic resonance
- solid state
- oxidative stress
- density functional theory
- respiratory syndrome coronavirus
- single molecule
- energy transfer
- magnetic resonance imaging
- computed tomography
- crystal structure
- mass spectrometry
- electronic health record
- anti inflammatory
- aqueous solution
- contrast enhanced