Login / Signup

Bacterial-responsive biodegradable silver nanoclusters composite hydrogel for infected wound therapy.

Shanshan GuoQi ZhangXiaoxiao LiQiaozhi WangXia LiPin WangQingwang Xue
Published in: Colloids and surfaces. B, Biointerfaces (2024)
Skin wounds are susceptible to bacterial infections, which hinder healing and extend recovery. Herein, we designed a silver nanoclusters (Ag NCs) composite hydrogel for infected wound treatment via bacterial enzymatic degradation and Ag release. Using biocompatible gelatine and polyethylene glycol as the main components, DNA-templated Ag NCs were covalently linked to a polymer network to obtain the final nanocomposite hydrogel. This hydrogel exhibited good compressive and tensile stiffness, bioadhesion and water absorption. The overexpressed bacterial enzymes protease and DNase in the infected wound were hydrolysed by the gel matrix, subsequently releasing antibacterial Ag ions. In vitro experimental results proved that the hydrogel demonstrated excellent bactericidal effect on Staphylococcus aureus and Escherichia coli, which are commonly implicated in clinical wound infections. Animal experiments revealed that the hydrogel considerably promoted cell proliferation and wound healing with less inflammatory responses. Thus, these results demonstrate strategies for bacterial enzyme-responsive Ag release for infected wound healing, facilitating further development of intelligent bandages.
Keyphrases