Atomic-Scale 3D Local Hydration Structures Influenced by Water-Restricting Dimensions.
Kenichi UmedaKei KobayashiTaketoshi MinatoHirofumi YamadaPublished in: Langmuir : the ACS journal of surfaces and colloids (2018)
Hydration structures at solid-liquid interfaces mediate between the atomic-level surface structures and macroscopic functionalities in various physical, chemical, and biological processes. Atomic-scale local hydration measurements have been enabled by ultralow noise three-dimensional (3D) frequency-modulation atomic force microscopy. However, for their application to complicated surface structures, e.g., biomolecular devices, understanding the relationship between the hydration and surface structures is necessary. Herein, we present a systematic study based on the concept of the structural dimensionality, which is crucial in various scientific fields. We performed 3D measurements and molecular dynamics simulations with silicate surfaces that allow for 0, 1, and 2 degrees of freedom to water molecules. Consequently, we found that the 3D hydration structures reflect the structural dimensions and the hydration contrasts decrease with increasing dimension due to the enlarged water self-diffusion coefficient and increased embedded hydration layers. Our results provide guidelines for the analysis of complicated hydration structures, which will be exploited in extensive fields.